IGDA Unity SIG II AI in Unity

Emil "AngryAnt" Johansen Unity Technologies

AI in Unity

Sensors
Decision logic
Navigation

Active
"Passive"
Message driven
Second pass filtering
Additional sensors or inclusion areas

Active

Using Physics.OverlapSphereIterating list of target objects

Using Physics.OverlapSphere

Entities already represented in the physics simulation

Filter by layer mask

Cheap radius check

Manual physics checks are expensive

Manual physics checks are expensive

Do not check each frame

Regular physics run at a fixed framerate of 20 fps per default

Adapt polling frequency to when the data is needed. Setting up the sensor as a service for the behaviour logic to use is a good best practice

Iterating list of target objects

Central registry

Objects of interest register with a singleton OnEnable and unregister OnDisable

- Sensors filter through this list when needed
- Registry can do early sorting and grouping based on meta data

Object.GetObjectsOfType

"Passive"

- Using physics triggers
- The physics simulation is running anyway, being clever about polling and prediction
- Requires either extra manual setup of the transform tree or initialization work
- You are served the data whether you need it or not
- Use layer filtering via the layer mask table or Physics.IgnoreCollision
- Most likely need to forward collision information from a child GO to the central sensor logic
- Radar structure

Message driven

- Ø Central monitor
 - Polling and interpreting state changes on monitored subjects
 - Redirection of messages from clients
- Relative broadcast
 - Using active sensor to determine target audience
 - Transmitting messages to each member

Second-pass filtering

Limit object list based on meta data

Tag filtering – more expensive than layer mask, but operating on already filtered data set

Component based sorting - GetComponent

Second-pass filtering

Visibility cone

Vector3.Angle (
 transform.forward,
 targetTransform.position - transform.position
) < coneAngle * 0.5f</pre>

Additional filters or inclusion areas

Proximity overriding visibility cone
"Audio" / event sensor
Crowd influence – dispersal and relaxation

Decision logic

Whatever is wrong with a bunch of nested if-statements?

Our Useful state machine setups

Available middleware

Whatever is wrong with a bunch of nested if-statements?

It is just logic after all

Systems handle abstraction and help keep you sane

Does the term "spaghetti code" mean anything to you?

Useful state machine setups

FSM combines state tracking and handling
Simple to understand system
Very slim implementation

Example: enum + switch in AI update + function call

Example:

enum + delegate + dictionary in abstract class

Available middleware

Why? Additional abstraction. Shortens the distance between idea and implementation
PlayMaker [video]
Behave [demo]

visual scripting for Unity 3D

Getting Started: PlayMaker Basics

© hutong games LLC 2011 all rights reserved

Demo: Behave

Navigation

Setting up simple pathesAvailable middleware

Setting up simple pathes

Linking transforms via linked list of node components

Keep track of next node

Adjust force or direction vector to fit – slerp
Basic steering

Available middleware

Aron Grandberg "A* Pathfinding"
Path

OnitySteer